GREEN CHEMISTRY

for

Resource Optimization

in

Chemical Industries.

Dr V.V.MAHAJANI

vvmahajani@gmail.com

Contact: 900 4266 456

❖ WASTE MANAGEMENT SUMMIT 2014

THEME: RESOURCES MANAGEMENT

for

SUSTAINABLE FUTURE

Preamble

GREEN CHEMISTRY principles rest upon

1. Atom Economy (Highest Selectivity)

Raw materials, Chemicals & catalyst consumption must be as low as theoretical possible. Direct impact on OPEX.

2. SHE compliance

Processes must be inherently Safe, no occupational Health hazard & Environmentally benign.

3. **ENCON** Global warming (Carbon footprint), ODP

ATOM ECONOMY MEANS:

> LESS CONSUMPTION OF RAW MATERIALS

> LOWER COST OF PRODUCTION

> LESS EFFLUENTS

>ETP LESS COSTLY (CAPEX & OPEX)

1. ATOM ECONOMY

OXO PROCESS:

$$C_3^{=}$$
 + (CO + H₂) = n C₄ al (n-butyraldehyde)
+ iso C₄ al (iso-butyraldehyde)

```
OLD Process : Catalyst Co \sim 25% iso C<sub>4</sub> al , 250 bar, 150°C LP OXO (JM Davy) : Catalyst Rh \sim 10% iso C<sub>4</sub> al , 16 bar, 120°C R / RP Biphasic water soluble Rh \sim <2% iso C<sub>4</sub> al , 100 bar, 120°C
```

UTILIZATION OF iso C₄ al (iso- butyraldehyde)

Aldol condensation

HCHO + H C
$$(CH_3)_2$$
 CHO

Basic Ion Exchange Resin

OHCH₂ - C(CH_3)₂- CHO

OHCH₂ - C(CH_3)₂- CHO

Hydroxy pivaldehyde

Aldol condensation

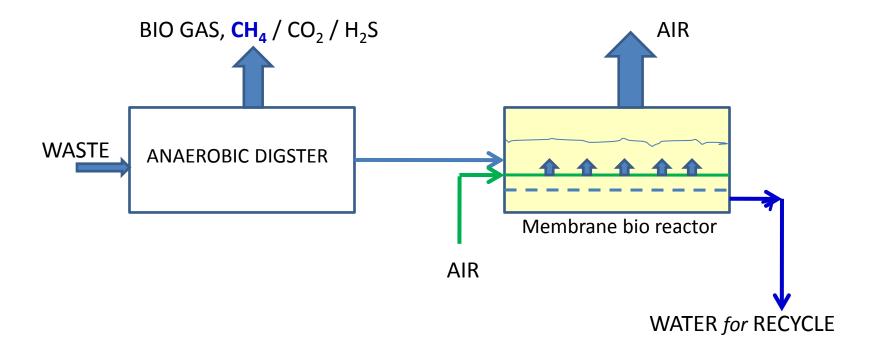
OHCH₂ - C(CH_3)₂- CHO

Neopentyl glycol

Studies to aid process development for the manufacture of neopentyl glycol from isobutyraldehyde: aldol condensation followed by hydrogenation. M. A. Tike, A. M. Gharde, and V. V. MAHAJANI, Asia-Pac. J. Chem. Eng; 3: 333 (2008).

MANUFACTURE OF ETHYLENE CARBONATE (EC) & THEN DMC

Studies in transesterification of ethylene carbonate to dimethyl carbonate over Amberlyst A-21 catalyst. S.M.Dhuri and **V.V.MAHAJANI**, J.ChemTech Biotech. **81** 62 (2006).


Oxidation Reactions results in acids formation:

- Acetic acid
- > BVC Acids
- Maleic, phthalic acids, citroconic acid
- > Aromatic acids: Benzoic, isophthalic, phthalic acid.

2. ENVIRONMENT MANAGEMENT

All liquid effluents, if required, should be treated with Fenton Reagent to enhance:

Biodegradability Index: BOD / COD

BIOMASS GASIFICATION to PRODUCE

SYN-GAS (CO,CO₂ & H₂)

SYN -GAS:

- > POWER
- **FERTILIZERs**
- ➤ METHANOL: GASOLINE & DIESEL, Bio Diesel CHEMICALS

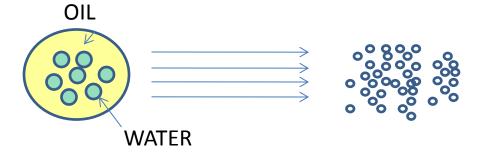
3.CARBON FOOT PRINT:

GREENHOUSE GAS (CO₂)

1. ALL ACTIVITIES INVOLVING COMBUSTION TO GENERATE

STEAM FOR HEATING PURPOSE AND ALSO VERY HIGH

PRESSURE STEAM FOR POWER GENERATION ARE


REQUIRED TO BE VERY EFFICIENT TO PRODUCE LESS CO₂.

HOW to do this in the case of FO?

USE W/ O EMULSION:

WATER SAY, 5%, EMULSIFIED WITH FURNACE OIL

IS USED AS FUEL IN A BOILER

FINE SUB MICRON FUEL PARTICLES BURN EFFICIENTLY:

LOW NOx, NO SOOT, MORE HEAT is RELEASED Less emission of CO₂ / T steam

> MANUFACTURE of BIODIESEL

Non Edible oils: Karanj, Jatropha etc

* PLANT NON EDIBLE OIL TREES AROUND AND USE OIL AS FUEL IN A BOILER.

>VIA CSR GIVE VILLAGERS EARNING

VILLAGERS CAN EXPEL OIL AND SELL THIS
TO POWER STATION or to Bio-Diesel
manufacturer

> THE CAKE CAN BE USED AS BIO FERTILIZER.

Price = β (Project Cost) + Gross Cost of Production

 $\checkmark \beta = includes profit,$ (Bottom Line)

INNOVATION IS ANYTHING THAT PRODUCES MONEY

MAHAJANI, 17 17